Author: Jere Longman, New York Times.

Reproduced from: https://www.deccanherald.com/content/624150/decoding-lightning.html

Usain Bolt of Jamaica appeared on a video screen in a white singlet and black tights, sprinting in slow motion through the final half of a 100-metre race. Each stride covered nine feet, his upper body moving up and down almost imperceptibly, his feet striking the track and rising so rapidly that his heels did not touch the ground.

Bolt is the fastest sprinter in history, the world-record holder at 100 and 200 metres and the only person to win both events at three Olympics. Yet as he approaches his 31st birthday and retirement this summer, scientists are still trying to fully understand how Bolt achieved his unprecedented speed.

Last month, researchers at Southern Methodist University, among the leading experts on the biomechanics of sprinting, started considering a number of questions as Bolt prepares for what he said would be his final performances at a major international competition — the 100 metres and 4×100-metre relay next month at the world track and field championships in London.

At its most basic, speed is the product of stride length times stride frequency. Though Bolt stands 6 feet 5 inches, he starts nearly as explosively as smaller sprinters and needs only 41 strides to cover 100 metres, while other elite runners need 43 or 45 or even 48.

No sprinter can accelerate for a full 100 metres. But once Bolt reaches top speed at 60 to 70 metres, he maintains his velocity more efficiently than others, decelerating less toward the finish line. The winner of a sprint is not the person speeding up the fastest at the end but slowing down the slowest.

It was once widely assumed that the swiftest runners achieved top speed by swinging their legs more rapidly than slow runners while repositioning their limbs between takeoff and landing.

In a 2000 study, Weyand, then working with a team at Harvard, determined that elite sprinters did not swing their legs appreciably quicker through the air. Instead, they gained maximum speed by striking the ground with a greater force than others in relation to their body weight, and for a shorter period of time.

For Olympic-calibre sprinters, that peak force can equal five times their body weight, providing lift and propulsion to begin the next stride. In Bolt’s case, his peak force can surpass 1,000 pounds.

 

Peak impact force is delivered within 0.03 seconds of striking the track. It is one of the most critical moments of sprinting. Less force put into the ground means less pop back into the air. Laurence Ryan, a physicist in the SMU lab, calls that period “30 milliseconds to glory.”
In other words, Weyand said, “You win your medal or you’re out of the running based on that short duration.”

Sprinters like Bolt land just behind the ball of the foot, which strikes the ground at an angle of about 6 degrees. His lower leg decelerates abruptly, absorbing 16 Gs of force. His heel drops for only 0.02 seconds — the equivalent of an inch — before rising again. The total time spent on the ground with each stride is about 0.09 seconds.

In effect, there is one biomechanical way for world-class sprinters to run extremely fast.
The SMU researchers did not know that one of Bolt’s legs was longer than the other when they began their study six months ago. They were testing a new motion-based technique, called the two-mass model, which allows them to determine ground forces by using high-speed video of races instead of specially equipped treadmills in the lab.

Udofa, the lead researcher, examined 20 steps apiece taken by Bolt and three other elite 100-metre sprinters, using video from a race in Monaco in 2011.

On average, Bolt struck the ground with 1,080 pounds of peak force on his right leg and 955 pounds on his left leg. Because his right leg is shorter, it has a slightly longer drop to the track, contributing to a higher velocity for that step. A natural adaptation for Bolt has been to keep his left leg on the ground for slightly more time with each step — 0.097 seconds, compared with 0.085 seconds for the right leg. This gives him slightly more time to generate force with the left leg, Weyand said, providing greater lift off the ground.

There is one person who apparently does not find the SMU research particularly interesting. That is Bolt himself, according to his agent, Ricky Simms, who said in an email, “He isn’t the kind of person who studies this type of thing.”

Translate »